					D	DEPAI	RTMEN		ECHANI se outco		IGINEER	ING											
SEME	ESTER - 1 & 2							Jours															
Course	Course Name				Cour	SE OII	ıtcome) C							Pr			tcome					
code	Course Hume		T		cour	50 00	recome	.5				1	2	3	4	5	6	7	8	9	10	11	12
		CO 1		stems o	f linear equa	tions,	, diagor	nalize m	atrices a	nd char	acterise	3	3	3	3	2	1			1	2		2
		CO 2		e the pa riable fu	rtial and tota inctions	al deri	ivatives	s and ma	axima an	d minin	na of	3	3	3	3	2	1			1	2		2
MAT 101	LINEAR ALGEBRA AND CALCULUS	CO 3	_	•	le integrals a pes, mass an	•						3	3	3	3	2	1			1	2		2
		CO 4	converg	gent, abs	s tests to deto olutely conditionally			O .	ven seri	es is		3	2	3	2	1	1			1	2		2
		CO 5			aylor and Fo	ourier	series	expansi	ion of fui	nctions	and	3	3	3	3	2	1			1	2		2
		CO 1	_	te the quering sys	antitative as tems.	pects	of way	ves and o	oscillatio	ns in		3	2						1	2			1
	ENGINEERING	CO 2	diffract	ion and i	action of light dentify thes ptical instru	se phe	enomer				otical	3	2						1	2			1
PHT 110	PHYSICS B (FOR NON- CIRCUIT	CO 3	through	the pri	aviour of ma nciples of qua ocesses in ele	antun	n mech	anics to			/el	3	2						1	2			1
	BRANCHES)	CO 4	the prin	iciples o	ledge of ultra f acoustics to and to provi	o expl	lain the	e nature	and cha	racteriz		3							1	2			1

		CO 5	Apply the comprehended knowledge about laser and fibre optic communication systems in various engineering applications	3	2					1	2		1
		CO 1	Apply the basic concepts of electrochemistry and corrosion to explore its possible applications in various engineering fields.	1	2	1							
		CO 2	Understand various spectroscopic techniques like UV-Visible, IR, NMR and its applications.	1	1		1	2					
CYT 100	ENGINEERING CHEMISTRY	CO 3	Apply the knowledge of analytical method for characterizing a chemical mixture or a compound. Understand the basic concept of SEM for surface characterisation of nanomaterials.	1	1		1	2					
		CO 4	Learn about the basics of stereochemistry and its application. Apply the knowledge of conducting polymers and advanced polymers in engineering.	2	1								
		CO 5	Study various types of water treatment methods to develop skills for treating wastewater.	1			1		3				
		CO 1	Recall principles and theorems related to rigid body mechanics	2	2								
		CO 2	Identify and describe the components of system of forces acting on the rigid body	3	3								
EST 100	ENGINEERING MECHANICS	CO 3	Apply the conditions of equilibrium to various practical problems involving different force system	3	3								
		CO 4	Choose appropriate theorems, principles or formulae to solve problems of mechanics	3	3								
		CO 5	Solve problems involving rigid bodies, applying the properties of distributed areas and masses	3	3								

		CO 1	Draw the projection of points and lines located in different quadrants	3									
		CO 2	Prepare multiview orthographic projections of objects by visualizing them in different positions	3									
EST 110	ENGINEERING	CO 3	Draw sectional views and develop surfaces of a given object	3	1								
E31 110	GRAPHICS	CO 4	Prepare pictorial drawings using the principles of isometric and perspective projections to visualize objects in three dimensions.	3								1	
		CO 5	Convert 3D views to orthographic views	3								2	
		CO 6	Obtain multiview projections and solid models of objects using CAD tools	3			3					3	
		CO 1	Recall the role of civil engineer in society and to relate the various disciplines of Civil Engineering.	3				3	2	2			
		CO 2	Explain different types of buildings, building components, building materials and building construction	3	2					3			
		CO 3	Describe the importance, objectives and principles of surveying.	3	2			2	3		2		
		CO 4	Summarise the basic infrastructure services MEP, HVAC, elevators, escalators and ramps	3	2	1	3				2		
		CO 5	Discuss the Materials, energy systems, water management and environment for green buildings.	3	2		3				2		

	BASICS OF CIVIL & MECHANICAL ENGINEERING	CO 6	Analyse thermodynamic cycles and calculate its efficiency	3	2		3				
		CO 7	Illustrate the working and features of IC Engines	3	1		3				
		CO 8	Explain the basic principles of Refrigeration and Air Conditioning	3	1						
		CO 9	Describe the working of hydraulic machines	3	2						
		CO 10	Explain the working of power transmission elements	3	1						
		CO 11	Describe the basic manufacturing, metal joining and machining processes	3							
		CO 1	Apply fundamental concepts and circuit laws to solve simple DC electric circuits	3	1						2
		CO 2	Develop and solve models of magnetic circuits	3	1						2
EST 130	BASICS OF ELECTRICAL AND	CO 3	Apply the fundamental laws of electrical engineering to solve simple ac circuits in steady state	3	1						2
E31 13U	ELECTRONICS ENGINEERING	CO 4	Describe working of a voltage amplifier	2							
		CO 5	Outline the principle of an electronic instrumentation system	2							2

		CO 6	Explain the principle of radio and cellular communication	2										2
		CO 1	Define and Identify different life skills required in personal and professional life						2	1	2	2	1	3
		CO 2	Develop an awareness of the self and apply well-defined techniques to cope with emotions and stress.								3			2
HUN 101	LIFE SKILLS	CO 3	Explain the basic mechanics of effective communication and demonstrate these through presentations.						1		1	3		
HON 101	LIFE SKILLS	CO 4	Take part in group discussions									3		1
		CO 5	Use appropriate thinking and problem solving techniques to solve new problems		3		2	1						
		CO 6	Understand the basics of teamwork and leadership						1		3			
		CO 1	Compute the derivatives and line integrals of vector functions and learn their applications	3	3	3	3	2	1		1	2		2
	VECTOR	CO 2	Evaluate surface and volume integrals and learn their inter-relations and applications	3	3	3	3	2	1		1	2		2
MAT 102	CALCULUS, DIFFERENTIAL EQUATIONS AND	CO 3	Solve homogeneous and non-homogeneous linear differential equation with constant coefficients	3	3	3	3	2	1		1	2		2
	TRANSFORMS	CO 4	Compute Laplace transform and apply them to solve ODEs arising in engineering	3	3	3	3	2	1		1	2		2

		CO 5	Determine the Fourier transforms of functions and apply them to solve problems arising in engineering	3	3	3	3	2	1		1	2		2
		CO 1	Develop vocabulary and language skills relevant to engineering as a profession									3		2
		CO 2	Analyze, interpret and effectively summarize a variety of textual content									1		3
HUN 102	PROFESSIONAL COMMUNICATI	CO 3	Create effective technical presentations						1		1	3		
10N 102	ON	CO 4	Discuss a given technical/non-technical topic in a group setting and arrive at generalizations/consensus									3		1
		CO 5	Identify drawbacks in listening patterns and apply listening techniques for specific needs		1						2	3		
		CO 6	Create professional and technical documents that are clear and adhering to all the necessary conventions	1					1		1	3		
		CO 1	Analyze a computational problem and develop an algorithm/flowchart to find its solution	*	*	*		*				*	*	*
		CO 2	Develop readable* C programs with branching and looping statements, which uses Arithmetic, Logical, Relational or Bitwise operators.	*	*	*	*					*		*
ECT 100	PROGRAMING	CO 3	Write readable C programs with arrays, structure or union for storing the data to be processed	*	*	*	*					*		*
EST 102	IN C	CO 4	Divide a given computational problem into a number of modules and develop a readable multi-function C program by using recursion if required, to find the solution to the computational problem	*	*	*	*					*	*	*

												Г
		CO 5	Write readable C programs which use pointers for array processing and parameter passing	*	*	*					*	*
		CO 6	Develop readable C programs with files for reading input and storing output	*	*	*					*	*
		CO 1	Develop analytical/experimental skills and impart prerequisite hands on experience for engineering laboratories	3			3		1	2		1
		CO 2	Understand the need for precise measurement practices for data recording	3			3		1	2		1
PHL 120	ENGINEERING PHYSICS LAB	CO 3	Understand the principle, concept, working and applications of relevant technologies and comparison of results with theoretical calculations	3			3		1	2		1
		CO 4	Analyze the techniques and skills associated with modern scientific tools such as lasers and fiber optics	3			3		1	2		1
		CO 5	Develop basic communication skills through working in groups in performing the laboratory experiments and by interpreting the results	3			3		1	2		1
		CO 1	Understand and practice different techniques of quantitative chemical analysis to generate experimental skills and apply these skills to various analyses	3			2					3
		CO 2	Develop skills relevant to synthesize organic polymers and acquire the practical skill to use TLC for the identification of drugs	3			3					3
	ENGINEERING	CO 3	Develop the ability to understand and explain the use of modern spectroscopic techniques for analysing and interpreting the IR spectra and NMR spectra of some organic compounds	3			3					3
CYL 120	CHEMISTRY LAB	CO 4	Acquire the ability to understand, explain and use instrumental techniques for chemical analysis	3			3					3

		CO 5	Learn to design and carry out scientific experiments as well as accurately record and analyze the results of such experiments	3		1						3
		CO 6	Function as a member of a team, communicate effectively and engage in further learning. Also understand how chemistry addresses social, economical and environmental problems and why it is an integral part of curriculum	3		1						3
		CO 1	Name different devices and tools used for civil engineering measurements	1		1	1		2	2		
		CO 2	Explain the use of various tools and devices for various field measurements	1		1	1		2	2		
		CO 3	Demonstrate the steps involved in basic civil engineering activities like plot measurement, setting out operation, evaluating the natural profile of land, plumbing and undertaking simple construction work	1		1	1	2	2	2	1	
ESL 120	CIVIL & MECHANICAL	CO 4	Choose materials and methods required for basic civil engineering activities like field measurements, masonry work and plumbing.	1		1	1	2	2	2	1	1
L3L 120	WORKSHOP	CO 5	Compare different techniques and devices used in civil engineering measurements	1		1	1		2	2		1
		CO 6	Identify Basic Mechanical workshop operations in accordance with the material and objects	1								
		CO 7	Apply appropriate Tools and Instruments with respect to the mechanical workshop trades	2								
		CO 8	Apply appropriate safety measures with respect to the mechanical workshop trades	2								
		CO 1	Demonstrate safety measures against electric shocks				3					1

		CO 2			s used for electr and standard sy		ing, elect	rical acc	essorie	s, wires,	2									1		
		CO 3		ls necess	nection diagran sary for wiring s						2			1		1		1	2	2		2
ESL 130	ELECTRICAL & ELECTRONICS WORKSHOP	CO 4	Identify	and test	various electro	nic com	ponents				3											2
		CO 5	Draw ci	rcuit sch	ematics with EI	OA tools					3				2							2
		CO 6	Assemb	le and te	st electronic cir	cuits on	boards				3				2							1
		CO 7	Work in	a team	with good interp	oersona	l skills												3	2		2
SEN	MESTER - 3																					
ourse cod					Course o	utcom	PC							Pr			tcome					
ourse coe	course realite				Course	dicom	<i>-</i>				1	2	3	4	5	6	7	8	9	10	11	12
		CO 1	Underst	and the	concept and the	solutio	n of part	ial differ	ential e	quation.	3	3	3	3	2	1				2		2
	PARTIAL	CO 2	Analyse	e and solve one dimensional wave equation and heat equation						ation.	3	3	3	3	2	1				2		2
MAT201	DIFFERENTIAL EQUATIONS AND COMPLEX	CO 3		stand complex functions, its continuity differentiability w CauchyRiemann equations.							3	3	3	3	2	1				2		2

	ANALYSIS					1			ī	1	_	1		
	TIVILISIS	CO 4	Evaluate complex integrals using Cauchy's integral theorem and Cauchy's integral formula, understand the series expansion of analytic function	3	3	3	3	2	1				2	2
		CO 5	Understand the series expansion of complex function about a singularity and Apply residue theorem to compute several kinds of real integrals.	3	3	3	3	2	1				2	2
		CO 1	Determine the stresses, strains and displacements of structures by tensorial and graphical (Mohr's circle) approaches	3	3	2								1
		CO 2	Analyse the strength of materials using stress-strain relationships for structural and thermal loading	3	3	2								1
MET201	MECHANICS OF SOLIDS	CO 3	Perform basic design of shafts subjected to torsional loading and analyse beams subjected to bending moments	3	3	1								2
		CO 4	Determine the deformation of structures subjected to various loading conditions using strain energy methods	3	3	1								1
		CO 5	Analyse column buckling and appreciate the theories of failures and its relevance in engineering design	3	3	1								1
MET203	MECHANICS OF FLUIDS	CO 1	Define Properties of Fluids and Solve hydrostatic problems	3	2									
	1 10100	CO 2	Explain fluid kinematics and Classify fluid flows	3	2	1								
		CO 3	Interpret Euler and Navier-Stokes equations and Solve problems using Bernoulli's equation	3	2	1								

		CO 4	Evaluate energy loses in pipes and sketch energy gradient lines	3	3	2							
		CO 5	Explain the concept of boundary layer and its applications	3	2	1							
		CO 6	Use dimensional Analysis for model studies	3	2	1							ı
		CO 1	Understand the basic chemical bonds, crystal structures (BCC, FCC, and HCP), and their relationship with the properties.	3									
		CO 2	Analyze the microstructure of metallic materials using phase diagrams and modify the microstructure and properties using different heat treatments.		3								
MET 205	METALLURGY & MATERIAL SCIENCE	CO 3	How to quantify mechanical integrity and failure in materials				2						
		CO 4	Apply the basic principles of ferrous and non-ferrous metallurgy for selecting materials for specific applications.					3					
		CO 5	Define and differentiate engineering materials on the basis of structure and properties for engineering applications.										2
		CO 1	Explain the different concepts and principles involved in design engineering.	2	1					1		1	
EST 200	DESIGN AND ENGINEERING	CO 2	Apply design thinking while learning and practicing engineering.		2				1		1		2

		CO 3	Develop innovative, reliable, sustainable and economically viable designs incorporating knowledge in engineering.		2		1	1		2	2		1
		CO 1	Understand the core values that shape the ethical behaviour of a professional.						2			2	
		CO 2	Adopt a good character and follow an ethical life.						2			2	
HUT 200	Professional Ethics	CO 3	Explain the role and responsibility in technological development by keeping personal ethics and legal ethics.						3			2	
		CO 4	Solve moral and ethical problems through exploration and assessment by established experiments.						3			2	
		CO 5	Apply the knowledge of human values and social values to contemporary ethical values and global issues.						3			2	
		CO 1	Understand the relevance and the concept of sustainability and the global initiatives in this direction				2	3					2
		CO 2	Explain the different types of environmental pollution problems and their sustainable solutions				2	3					2
MCN201	SUSTAINABLE ENGINEERING	CO 3	Discuss the environmental regulations and standards				2	3					2
		CO 4	Outline the concepts related to conventional and non-conventional energy				2	3					2

		CO 5	Demonstrate the broad perspective of sustainable practices by utilizing engineering knowledge and principles						2	3					2
		CO 1	Apply the knowledge of engineering drawings and standards to prepare standard dimensioned drawings of machine parts and other engineering components.	3									3		
		CO 2	Preparestandard assembly drawings of machine components and valvesusing part drawings and bill of materials	3		2							3		
MEL201	COMPUTER AIDED MACHINE DRAWING	CO 3	Apply limits and tolerances to components and choose appropriate fits for given assemblies	3	2										
		CO 4	Interpret the symbols of welded, machining and surface roughness on the component drawings.	3											
		CO 5	Prepare part and assembly drawings and Bill of Materials of machine components and valves using CAD software.	3				3					3		1
		CO 1	To understand the basic concepts of analysis of circular shafts subjected to torsion.	3				3							
		CO 2	To understand the behaviour of engineering component subjected to cyclic loading and failure concepts	3	3	1		3				3	2	2	1
MEL203	MATERIALS TESTING LAB	CO 3	Evaluate the strength of ductile and brittle materials subjected to compressive, Tensile shear and bending forces	3	3	3	1	3				3	2	3	2
		CO 4	Evaluate the microstructural morphology of ductile or brittle materials and its fracture modes (ductile /brittle fracture) during tension test	3	3	3	3	3	2	2	1	3	2	3	2

		CO 5	To spec		ble material for	applicati	ions in tl	ne field (of desigi	n and	3	3	3	1	3	2	2	1	3	2	3	2
SEN	MESTER - 4																					
ourse cod	Course Name				Course o	utcome	es							Pr 4	<mark>ogra</mark> i 5		tcome 7)s) 9	40	44	40
		CO 1			concept, proper es and,using the		3	2	2	2	2	6	/	8	9	2	11	1				
		CO 2			concept, proper es and,using the			3	2	2	2	2					2		1			
MAT 202	PROBABILITY,S TATISTICS AND NUMERICAL METHODS	CO 3			cal inferences co ites of samples o		pulation	3	2	2	2	2					2		1			
		CO 4		lation or	of equations, evan given numerica						3	2	2	2	2					2		1
		CO 5		curves or	numerical techn given numerica						3	2	2	2	2					2		1
MET202	ENGINEERING THERMODYNA MICS	CO 1	Unders	ons. etand basic concepts and laws of thermodynamics																		
		CO 2	Conduc	t first lav	first law analysis of open and closed systems																	
		CO 3	Determ process		opy and availabi	erent																

		CO 4	Understand the application and limitations of different equations of state								
		CO 5	Determine change in properties of pure substances during phase change processes								
		CO 6	Evaluate properties of ideal gas mixtures								
		CO 1	Illustrate the basic principles of foundry practices and special casting processes, their advantages, limitations and applications.	3							
		CO 2	Categorize welding processes according to welding principle and material.								2
MET 204	MANUFACTURI NG PROCESS	CO 3	Understand requirements to achieve sound welded joint while welding different similar and dissimilar engineering materials			3					
		CO 4	Student will estimate the working loads for pressing, forging, wire drawing etc. processes				3				
		CO 5	Recommend appropriate part manufacturing processes when provided a set of functional requirements and product development constraints.		3						
		CO 1	Explain the characteristics of centrifugal and reciprocating pumps	3	3	2					
		CO 2	Calculate forces and work done by a jet on fixed or moving plate and curved plates	3	3	2					

MET206	FLUID	CO 3	Explain the working of turbines and Select a turbine for specific application.	3	3	2							
ME1206	MACHINERY	CO 4	Analyse the working of air compressors and Select the suitable one based on application	3	3	2							
		CO 5	Analyse gas turbines and Identify the improvements in basic gas turbine cycles	3	3	2							
		CO 6	Explain the characteristics of centrifugal and reciprocating pumps	3	3	2							
		CO 1	Explain the different concepts and principles involved in design engineering.	2	1				1			1	
EST 200	DESIGN AND ENGINEERING	CO 2	Apply design thinking while learning and practicing engineering		2			1		1			2
		CO 3	Develop innovative, reliable, sustainable and economically viable designs incorporating knowledge in engineering.			2		1	1		2	2	1
		CO 1	Understand the core values that shape the ethical behaviour of a professional.										
		CO 2	Adopt a good character and follow an ethical life.										
HUT 200	PROFESSIONAL ETHICS	CO 3	Explain the role and responsibility in technological development by keeping personal ethics and legal ethics.										

		CO 4	Solve moral and ethical problems through exploration and assessment by established experiments.									
		CO 5	Apply the knowledge of human values and social values to contemporary ethical values and global issues.									
		CO 1	Explain the background of the present constitution of India and features				2	2	2		2	
		CO 2	Utilize the fundamental rights and duties.				3	3	3		3	
MCN202	CONSTITUTION	CO 3	Understand the working of the union executive, parliament and judiciary.				3	2	3		3	
WGWZOZ	OF INDIA	CO 4	Understand the working of the state executive, legislature and judiciary.				3	2	3		3	
		CO 5	Utilize the special provisions and statutory institutions.				3	2	3		3	
		CO 6	Show national and patriotic spirit as responsible citizens of the country				3	3	3		2	
		CO 1	Determine the coefficient of discharge of flow measuring devices (notches, orifice meter and Venturi meter)	2	1				2	3	2	2
		CO 2	Calibrate flow measuring devices (notches, orifice meter and Venturi meter)	2	1				2	3	2	2

MEL202	FM & HM LAB	CO 3	Evaluat	e the los	ses in pipes						2	1						2	3	2		2
		CO 4	Determ	ine the r	netacentric heig	ht and s	tability c	of floati	ng bod	es	2	1						2	3	2		2
		CO 5			fficiency and ploand turbines	ot the ch	aracteri	stic cur	ves of o	lifferent	2	1						2	3	2		2
		CO 1	work ho	olders ar	n operate different ad operating printlesired quality.								3									
		CO 2		utting m consump	echanics to met	al machi	ning bas	ed on c	cutting	force and		3										
MEL 204	MACHINE TOOLS LAB- I	CO 3		ppropria it metals	ate machining p	rocesses	and pro	cess pa	ıramete	ers for				2								
		CO 4	student	s will be	ssemble various able to visually les and defects.						2											
		CO 5			es in properties (empering	of steel o	on annea	ling, no	ormaliz	ing,					2							
SEN	MESTER - 5																					
ourse cod	Course Name				Course outcomes												tcome				1	
					fundamentals of kinematics, various planar mechanism						1	2	3	4	5	6	7	8	9	10	11	12
		CO 1			lamentals of kin sic principles of	nisms and	2															

		CO 2	Perform analysis and synthesis of mechanisms	3	3	3	2	2				
MET301	MECHANICS OF MACHINERY	CO 3	Solve the problem on cams and gear drives, including selection depending on requirement.	3	3	2	2	2				
		CO 4	Calculate the gyroscopic effect in various situations	3	2	1	1	1				
		CO 5	Analyse rotating and reciprocating masses for its unbalance	3	2	2	1	2				
		CO 1	Explain the working of steam power cycle and related components									
		CO 2	Discuss the working of steam turbines and methods for evaluating the performance									
МЕТ303	THERMAL ENGINEERING	CO 3	Illustrate the performance testing and evaluation of IC engines									
		CO 4	Explain the combustion phenomenon and pollution in IC engines									
		CO 5	Discuss the principles of refrigeration and air-conditioning and basic design considerations									
		CO 1	Implement various tools and techniques in industrial engineering	2				2		2	2	2

		CO 2	Calculate the inventory system for a given requirement	3			2					2	2	2
MET305	INDUSTRIAL & SYSTEMS	CO 3	Explain the importance of industrial relations						1		2	2	1	2
ME1303	ENGINEERING	CO 4	Select the lean manufacturing tools to find and eliminate wastes	2	1		2	1					2	2
		CO 5	Identify the framework of agile manufacturing				2	1			2		2	2
		CO 6	Identify core and extended modules of enterprise resource planning	2				3					2	2
		CO 1	Analyze various machining process and calculate relevant quantities such us velocities, forces and powers.	2	3								2	1
		CO 2	Analyze of the tool nomenclature with surface roughness obtainable in each machining processes	2	3								2	1
MET 307	MACHINE TOOLS AND METROLOGY	CO 3	Understand the limitations of various machining process with regard to shape formation and surface texture.	2	1		2	2						2
		CO 4	Demonstrate knowledge of the underlying principles of measurement, as they relate to mechanical measurement, electronic instrumentation, and thermal effects.	3		2							2	2
		CO 5	Get an exposure to advanced measuring devices and machine tool metrology.	2			2	3						3

		CO 1	Define and use various terminologies in use in disaster management parlance and organise each of these terms in relation to the disaster management cycle		2				2				2		2
		CO 2	Distinguish between different hazard types and vulnerability types and do vulnerability assessment	2	3	2		2	2	3			3		2
MCN 301	DISASTER	CO 3	Identify the components and describe the process of risk assessment, and apply appropriate methodologies to assess risk	2	3	2	2	2	2	3			3		2
MCN 301	MANAGEMENT	CO 4	Explain the core elements and phases of Disaster Risk Management and develop possible measures to reduce disaster risks across sector and community	3	3	3		2	2	3					2
		CO 5	Identify factors that determine the nature of disaster response and discuss the various disaster response actions	3	3			2	2	3					2
		CO 6	Explain the various legislations and best practices for disaster management and risk reduction at national and international level (Cognitive knowledge level	3					2	3	3				2
		CO 1	Explain the characteristics of management in the contemporary context	2				1	2	2	2		2	1	1
		CO 2	Describe the functions of management	2				1	1		2	1	2	1	1
HIIT 210	MANAGEMENT FOR ENGINEERS	CO 3	Demonstrate ability in decision making process and productivity analysis	2	2	2	2	1							
1101 310	I ON LINGINGERS	CO 4	Illustrate project management technique and develop a project schedule	2	2	2	2	1						2	1

												1			
		CO 5	Summarize the functional areas of management	2					1	1		1	2	1	
		CO 6	Comprehend the concept of entrepreneurship and create business plans		2	2	2	1	1	1	1	1	1	1	1
		CO 1	Apply the procedures to measure length, angles, width, depth, bore diameters, internal and external tapers, tool angles, and surface roughness by using different instruments and by different indirect methods.	3											
		CO 2	Determine limits and fits and allocate tolerances for machine components			3									
MEL331	MACHINE TOOLS LAB II	CO 3	CNC programming and to use coordinate measuring machine to record measurements of complex profiles with high sensitivity.				3								
		CO 4	Use effective methods of measuring straightness, Squareness, flatness, roundness, profile, screw threads and gear teeth.		3										
		CO 5	Securing knowledge of manufacturing components within the tolerance limit and surface roughness according to given drawings using various machine tools					3							
		CO 1	Measure thermo-physical properties of solid, liquid and gaseous fuels	3		2	3			2		3	2		2
		CO 2	Identify various systems and subsystems of Diesel and petrol engines	3		2	3			2		3	2		2
MEL333	THERMAL ENGINEERING LAB 1	CO 3	Analyse the performance characteristics of internal combustion engines	3		2	3			2		3	2		2

		CO 4	Investig Engines	gate the	emission	ı charact	eristics	of exhau	ıst gases	from IC		3		2	3			2		3	2		2
		CO 5	Interpr	et the pe	erforman	ice chara	octeristi	cs of air	compres	sors / b	lowers	3		2	3			2		3	2		2
SEN	MESTER - 6																						
ourse cod					(Course o	utcomo	v.C.							Pr	ograi		come	es (PC)s)			
ourse coc	Course Name		1			Julise u	utcome	:3				1	2	3	4	5	6	7	8	9	10	11	12
		CO 1	Apply p	orinciple	s of heat	and mas	ss transf	er to eng	gineerin	g proble	ems	3	3	2									1
MET302	HEAT &MASS	CO 2	Analyse heat tra	e and obt	ain solu	tions to	problem	ıs involv	ing vario	ous mod	es of	3	3	3									2
ME 1302	TRANSFER	CO 3	Design shields	heat trai etc.	nsfer sys	tems su	ch as he	at exchai	ngers, fir	ıs, radia	tion	3	3	3									2
		CO 4		laminar a equatior				layers ar	nd ability	to forn	nulate	3	3	3									2
		CO 1	Do engi	ine force	analysis	and to	draw tui	ning mo	ment di	agram		3	3	2									
		CO 2	Analyse	e free and	d forced	vibratio	ns of sin	gle degr	ee of fre	edom sy	stems	3	3	2									
MET304	DYNAMICS AND DESIGN OF MACHINERY	CO 3	system	ine the r and to called	alculate							3	3	2									

		CO 4	Design machine elements subjected to fatigue loading and riveted joints	3	3	2						
		CO 5	Design welded joint and close coiled helical compression spring	3	3	2						
		CO 1	To be conversant with the advanced machining process and to appreciate the effect of process parameters on the surface integrity aspects during the advanced machining process.	3				2				2
		CO 2	To be conversant with the advanced machining process and to appreciate the effect of process parameters on the surface integrity aspects during the advanced machining process.	2		2		3				
MET 306	ADVANCED MANUFACTURI NG	CO 3	To categorize the various nontraditional material removal process based on energy sources and mechanism employed	2				2				2
	ENGINEERING	CO 4	Analyze the processes and evaluate the role of each process parameter during micro machining of various advanced material removal processes.	2	3			2				
		CO 5	Explain the processes used in additive manufacturing for a range of materials and applications.	2			3	2			2	
		CO 1	Learn to prepare for a competitive examination	3	2							2
MET308	COMPREHENSIV E COURSE	CO 2	Comprehend the questions in Mechanical Engineering field and answer them with confidence	3	2							2
141E 1 300	WORK	CO 3	Communicate effectively with faculty in scholarly environments	3	2							2

		CO 4	Analyze the comprehensive knowledge gained in basic courses in the field of Mechanical Engineering	2	3							2
		CO 1	Explain the problem of scarcity of resources and consumer behaviour, and to evaluate the impact of government policies on the general economic welfare	2							3	
		CO 2	Take appropriate decisions regarding volume of output and to evaluate the social cost of production.	2	2		2	2	3		3	
HUT 300	INDUSTRIAL ECONOMICS & FOREGIN TRADE	CO 3	Determine the functional requirement of a firm under various competitive conditions.	2	2	1					3	
		CO 4	Examine the overall performance of the economy, and the regulation of economic fluctuations and its impact on various sections in the society.	2	2	1		1			3	
		CO 5	Determine the impact of changes in global economic policies on the business opportunities of a firm	2	2	1					3	
		CO 1	Have a basic knowledge of surface NDT which enables to carry out various inspections in accordance with the established procedures	3	3	2						1
		CO 2	The students will be able to differentiate various defect types and select the appropriate NDT methods for the specimen.	3	3	2						1
MET 312	NON DESTRUCTIVE TESTING	CO 3	Calibrate the instrument and evaluate the component for imperfections	3	3	1						2
		CO 4	Have a basic knowledge of ultrasonic testing which enables them to perform inspection of samples.	3	3	2						2

		CO 5	Have a complete theoretical and practical understanding of the radiographic testing, interpretation and evaluation.	3	3	1						1
		CO 1	Explain different automotive systems and subsystems .	3								3
MET 352	AUTOMOBILE	CO 2	Illustrate the principles of transmission, suspension, steering and braking systems of an automobile.	3								3
ME1 332	ENGINEERING	CO 3	Build a basic knowledge about the technology in electric vehicles	3								3
		CO 4	Summarize the concept of aerodynamics in automobiles.	3								3
		CO 1	Gain working knowledge in Computer Aided Design and modelling procedures.	3							2	
		CO 2	Gain knowledge in creating solid machinery parts.	3							3	
MEL332	COMPUTER AIDED DESIGN & ANALYSIS LAB	CO 3	Gain knowledge in assembling machine elements.	3	3					2	2	
		CO 4	Gain working knowledge in Finite Element Analysis	3	1	3			1	2	3	
		CO 5	Solve simple structural, heat and fluid flow problems using standard software	3	3	2			2	3	3	

		CO 1	Evaluat radiatio		ıl propei	rties of	material	s in con	duc	ction, convec	ction	and	3		2	3			2		3	2		2
MEL334	THERMAL ENGINEERING	CO 2	Analyse	the perf	ormanc	e of hea	at exchan	igers					3		2	3			2		3	2		2
MEL334	LAB-II	CO 3		te the op		al perfo	rmances	of refrig	ger	ration and air	r		3		2	3			2		3	2		2
		CO 4	Perforn	ı calibrat	tion of tl	hermoc	ouples a	nd press	sur	e gauges			3		2	3			2		3	2		2
SE	MESTER - 7						_																	
							_									Pr	ograi	n Out	come	es (PC)s)			
ourse cod	Course Name				C	ourse	outcome	es					1	2	3	4	5	6	7	8		10	11	12
		CO 1								n for static a of IC engines			3	3	3									
		CO 2	Design	clutches	and bra	kes							3	3	3									
MET401	DESIGN OF MACHINE ELEMENTS	CO 3		e sliding o , ball and				derstand	d d	lesign procec	dure (of	3	3	3									
		CO 4	Design	Spur gea	r and he	elical ge	ear						3	3	3									

		CO 1	Understand the theoretical and practical knowledge in methods of non-destructive testing processes	3		3		2	2	1	2		1
	ADVANCED	CO 2	Understand the knowledge of advanced methods in ultrasonic testing which enables them to perform inspection of samples	3		3		2	2	1	2		1
MET413	METHODS IN NON DESTRUCTIVE	CO 3	Illustrate complete theoretical and practical understanding of the radiographic testing, interpretation and evaluation	3		3		2	2	1	2		1
	TESTING	CO 4	Understand the recent advances in the field of non-destructive testing	3		3		2	2	1	2		1
		CO 5	Outline the recent and advanced developments in radiography testing	3		3		2	2	1	2		1
		CO 1	Explain the basics of refrigeration process.	3			1						1
		CO 2	Analyse the vapour compression refrigeration system and to improve the performance	3	2		2						1
MET473	AIR CONDITIONING AND	CO 3	Describe vapour absorption and steam refrigeration system.	3	2		2						1
	REFRIGERATION												
	REFRIGERATION	CO 4	Design refrigeration system by selecting suitable components and environmentally refrigerant.	3	1			2	3				1

		CO 1	Explain renewable energy sources and evaluate the implication of renewable energy. To predict solar radiation at a location	3										3
		CO 2	Explain solar energy collectors, storages, solar cell characteristics and applications	3	3			1	1	1			1	3
MET445	RENEWABLE ENERGY ENGINEERING	CO 3	Explain the different types of wind power machines and control strategies of wind turbines	3	3			1	1	1			1	3
		CO 4	Explain the ocean energy and conversion devices and different Geothermal sources	3	3			1	1	1			1	3
		CO 5	Explain biomass energy conversion devices. Calculate the Net Present value and payback period	3	3			1	1	1			1	3
		CO 1	Identify academic documents from the literature which are related to her/his areas of interest	2	2	1	1	1		2				3
		CO 2	Read and apprehend an academic document from the literature which is related to her/ his areas of interest	3	3	2	3	3		2				3
MEQ413	SEMINAR	CO 3	Prepare a presentation about an academic document	3	2				3		1	2		3
		CO 4	Give a presentation about an academic document	3					2		1	3		3
		CO 5	Prepare a technical report	3	3	3	3	3	2	2	2	3		3

		CO 1	Model and solve real world problems by applying knowledge across domains	2	2	2	1	2	2	2	1	1	1	1	2
		CO 2	Develop products, processes or technologies for sustainable and socially relevant applications	2	2	2		1	3	3	1	1		1	1
		CO 3	Function effectively as an individual and as a leader in diverse teams and to comprehend and execute designated tasks									3	2	2	1
MED415	PROJECT PHASE I	CO 4	Plan and execute tasks utilizing available resources within timelines, following ethical and professional norms					2			3	2	2	3	2
		CO 5	Identify technology/research gaps and propose innovative/creative solutions	2	3	3	1	2							1
		CO 6	Organize and communicate technical and scientific findings effectively in written and oral forms					2			2	2	3	1	1
		CO 1	Get practical knowledge on design and analysis of mechanisms in the machines	3	2	2	3	3		2		3	2		2
MEL411	MECHANICAL ENGINEERING	CO 2	Measure the cutting forces associated with milling machining operations.	3	2	2	3	3		2		3	2		2
WELTI	LAB	CO 3	Apply the basic concepts of hydraulic and pneumatic actuators and their applications in product and processes	3	2	2	3	3		2		3	2		2
		CO 4	Use appropriate systems for data acquisition and control of product and processes	3	2	2	3	3		2		3	2		2

		CO 1		e the the		acciden	t causati	ion and p	oreventi	ve meas	ıres of	2	2				2	2	2				1
		CO 2		about p						on, safety ing.	7	2	1	2		1	1	1	1				1
MCN401	INDUSTRIAL SAFETY ENGINEERING	CO 3	Explain	differen	ıt issues	in const	ruction i	industrie	es.			2	2	2		1	1	1	1	1	1		1
		CO 4		e variou ical mat			ated wit	h differe	nt mach	nines and		2	2	2		1	1	1	1	1	1		1
		CO 5		different wledge						ndustries	with	2	2	2	1	1	1	1	1	1	1		1
SEI	MESTER - 8																						
							•								Pr	ograi	n Out	tcome	es (PC)s)			
ourse cod	Course Name		1		(Course o	utcome	es .				1	2	3	4	5	6	7	8	9	10	11	12
		CO 1	Explain	the sens	sors and	actuato	rs used i	n mecha	tronics			3	2	2									
		CO 2	Design	hydrauli	c and pr	eumatic	circuits	for auto	mation			3	3	3		3							
		CO 3	Explain	the mar	nufactur	ing proc	esses use	ed in ME	MS			3	1	1									

MET402	MECHATRONICS	CO 4	Demonstrate the various components of a CNC machine	3	1	1							
		CO 5	Create a PLC program	3	3	3		3					
		CO 6	Explain the robotic sensors and vision system	3	1	1							
		CO 1	Explain different techniques used in micro and nano manufacturing	3					1	2	1	1	
		CO 2	Describe conventional techniques used in micro manufacturing.	2					1	2	1	1	
MET464	MICRO AND NANO	CO 3	Describe non-conventional micro-nano manufacturing approaches.	2			2		1	2	1	1	
ME1404	MANUFACTURI NG	CO 4	Outline the working principle and applications of micro and nano finishing processes	3					1	2	1	1	
		CO 5	Explain the basics of micro and nano fabrication techniques.	2					1	2	1	1	
		CO 6	Apply and select metrology systems in micro and nano manufacturing.	3				1		2	1	2	1
		CO 1	Explain the properties of cryogenic liquids and properties of material at cryogenic temperatures	3	2	1							

		CO 2	Describe and analyze cryogenic liquefaction systems using first principles of thermodynamics	3	2							
MET476	CRYOGENIC	CO 3	Describe and analyze cryogenics refrigeration using first principles of thermodynamics	3	2	1						
ME1470	ENGINEERING	CO 4	Identify insulation system for cryogenic application and explain cryogenic storage vessels.	3	1							
		CO 5	Understand gas separation and purification methods	3	1							
		CO 6	Understand instrumentation for various measurements in cryogenic engineering.	3	1							
		CO 1	Explain the concept of various types of power generation	3	1							
		CO 2	Explain solar and wind power generation and its economics	3	1							
MET458	ADVANCED ENERGY ENGINEERING	CO 3	Explain biomass energy sources and its economics	3	1							
		CO 4	Explain various renewable energy sources	3	1							
		CO5	Explain environmental impacts of various energy generation	3	1			1	1			

		CO 1	The objective of this Course viva is to ensure the basic knowledge of each student in the most fundamental core courses in the curriculum.												
MET404	COMPREHENSIV E COURSE VIVA	CO 2	The viva voce shall be conducted based on the core subjects studied from third to eighth semester												
		CO 3	helps the learner to become competent in placement tests and other competitive examinations.												
		CO 1	Model and solve real world problems by applying knowledge across domains	2	2	2	1	2	2	2	1	1	1	1	2
		CO 2	Develop products, processes or technologies for sustainable and socially relevant applications	2	2	2		1	3	3	1	1		1	1
MED416	PROJECT PHASE	CO 3	Function effectively as an individual and as a leader in diverse teams and to comprehend and execute designated tasks								3	2	2	3	2
MED410	II	CO 4	Plan and execute tasks utilizing available resources within timelines, following ethical and professional norms					2			3	2	2	3	1
		CO 5	Identify technology/research gaps and propose innovative/creative solutions	2	3	3	1	2							
		CO 6	Organize and communicate technical and scientific findings effectively in written and oral forms					2			2	2	3	1	1